Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6486 -
Telegram Group & Telegram Channel
👍 Инструмент недели: `torchao` — лёгкое квантование и оптимизация PyTorch-моделей

`torchao` — это новая экспериментальная библиотека от команды PyTorch, разработанная для простого применения квантования, разреживания и других оптимизаций к нейросетевым моделям.

Основные возможности:
📍 `autoquant` — автоматическое квантование модели по слоям, без ручной настройки
📍 поддержка INT8 квантования, совместимого с torch.ao.quantization
📍 интеграция с PyTorch 2.x (использует torch.compile, dynamo, inductor)
📍 поддержка разреживания (sparsity), структурных трансформаций
📍 работа с предварительно обученными моделями — ResNet, MobileNet, Llama и др
📍 возможность применения на CPU/GPU, включая ускорение inference в ONNX и TorchScript

Если вы хотите:
📍 ускорить инференс без потери качества
📍 уменьшить размер модели для edge-устройств или мобильных приложений
📍 минимизировать latency для real-time задач
📍 подготовить модели к выводу на продакшн с минимальным инженерным оверхедом

то torchao может стать отличной альтернативой более сложным инструментам квантования.

Пример использования:
from torchao.quant import autoquant

# Загружаем обученную модель
model = torchvision.models.resnet18(pretrained=True).eval()

# Применяем автоматическое квантование
model = autoquant(model)


🔴 Подробнее на GitHub: https://clc.to/XUsE5g

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6486
Create:
Last Update:

👍 Инструмент недели: `torchao` — лёгкое квантование и оптимизация PyTorch-моделей

`torchao` — это новая экспериментальная библиотека от команды PyTorch, разработанная для простого применения квантования, разреживания и других оптимизаций к нейросетевым моделям.

Основные возможности:
📍 `autoquant` — автоматическое квантование модели по слоям, без ручной настройки
📍 поддержка INT8 квантования, совместимого с torch.ao.quantization
📍 интеграция с PyTorch 2.x (использует torch.compile, dynamo, inductor)
📍 поддержка разреживания (sparsity), структурных трансформаций
📍 работа с предварительно обученными моделями — ResNet, MobileNet, Llama и др
📍 возможность применения на CPU/GPU, включая ускорение inference в ONNX и TorchScript

Если вы хотите:
📍 ускорить инференс без потери качества
📍 уменьшить размер модели для edge-устройств или мобильных приложений
📍 минимизировать latency для real-time задач
📍 подготовить модели к выводу на продакшн с минимальным инженерным оверхедом

то torchao может стать отличной альтернативой более сложным инструментам квантования.

Пример использования:

from torchao.quant import autoquant

# Загружаем обученную модель
model = torchvision.models.resnet18(pretrained=True).eval()

# Применяем автоматическое квантование
model = autoquant(model)


🔴 Подробнее на GitHub: https://clc.to/XUsE5g

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6486

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from de


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA